312 research outputs found

    Surfactant status and respiratory outcome in premature infants receiving late surfactant treatment.

    Get PDF
    BACKGROUND:Many premature infants with respiratory failure are deficient in surfactant, but the relationship to occurrence of bronchopulmonary dysplasia (BPD) is uncertain. METHODS:Tracheal aspirates were collected from 209 treated and control infants enrolled at 7-14 days in the Trial of Late Surfactant. The content of phospholipid, surfactant protein B, and total protein were determined in large aggregate (active) surfactant. RESULTS:At 24 h, surfactant treatment transiently increased surfactant protein B content (70%, p < 0.01), but did not affect recovered airway surfactant or total protein/phospholipid. The level of recovered surfactant during dosing was directly associated with content of surfactant protein B (r = 0.50, p < 0.00001) and inversely related to total protein (r = 0.39, p < 0.0001). For all infants, occurrence of BPD was associated with lower levels of recovered large aggregate surfactant, higher protein content, and lower SP-B levels. Tracheal aspirates with lower amounts of recovered surfactant had an increased proportion of small vesicle (inactive) surfactant. CONCLUSIONS:We conclude that many intubated premature infants are deficient in active surfactant, in part due to increased intra-alveolar metabolism, low SP-B content, and protein inhibition, and that the severity of this deficit is predictive of BPD. Late surfactant treatment at the frequency used did not provide a sustained increase in airway surfactant

    Depleted 15N in hydrolysable-N of arctic soils and its implication for mycorrhizal fungi–plant interaction

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 97 (2009): 183-194, doi:10.1007/s10533-009-9365-1.Uptake of nitrogen (N) via root-mycorrhizal associations accounts for a significant portion of total N supply to many vascular plants. Using stable isotope ratios (δ15N) and the mass balance among N pools of plants, fungal tissues, and soils, a number of efforts have been made in recent years to quantify the flux of N from mycorrhizal fungi to host plants. Current estimates of this flux for arctic tundra ecosystems rely on the untested assumption that the δ15N of labile organic N taken up by the fungi is approximately the same as the δ15N of bulk soil. We report here hydrolysable amino acids are more depleted in 15N relative to hydrolysable ammonium and amino sugars in arctic tundra soils near Toolik Lake, Alaska, USA. We demonstrate, using a case study, that recognizing the depletion in 15N for hydrolysable amino acids (δ15N = -5.6 ‰ on average) would alter recent estimates of N flux between mycorrhizal fungi and host plants in an arctic tundra ecosystem.This study was funded by NSF-DEB-0423385and NSF-DEB 0444592. Additional support was provided by Arctic Long Term Ecological Research program, funded by National Science Foundation, Division of Environmental Biology

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C

    Plastisol Foaming Process. Decomposition of the Foaming Agent, Polymer Behavior in the Corresponding Temperature Range and Resulting Foam Properties

    Get PDF
    The decomposition of azodicarbonamide, used as foaming agent in PVC - plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min-1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g -1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol-1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse

    Distinguishing Characteristics between Pandemic 2009–2010 Influenza A (H1N1) and Other Viruses in Patients Hospitalized with Respiratory Illness

    Get PDF
    BACKGROUND: Differences in clinical presentation and outcomes among patients infected with pandemic 2009 influenza A H1N1 (pH1N1) compared to other respiratory viruses have not been fully elucidated. METHODOLOGY/PRINCIPAL FINDINGS: A retrospective study was performed of all hospitalized patients at the peak of the pH1N1 season in whom a single respiratory virus was detected by a molecular assay targeting 18 viruses/subtypes (RVP, Luminex xTAG). Fifty-two percent (615/1192) of patients from October, 2009 to December, 2009 had a single respiratory virus (291 pH1N1; 207 rhinovirus; 45 RSV A/B; 37 parainfluenza; 27 adenovirus; 6 coronavirus; and 2 metapneumovirus). No seasonal influenza A or B was detected. Individuals with pH1N1, compared to other viruses, were more likely to present with fever (92% & 70%), cough (92% & 86%), sore throat (32% & 16%), nausea (31% & 8%), vomiting (39% & 30%), abdominal pain (14% & 7%), and a lower white blood count (8,500/L & 13,600/L, all p-values<0.05). In patients with cough and gastrointestinal complaints, the presence of subjective fever/chills independently raised the likelihood of pH1N1 (OR 10). Fifty-five percent (336/615) of our cohort received antibacterial agents, 63% (385/615) received oseltamivir, and 41% (252/615) received steroids. The mortality rate of our cohort was 1% (7/615) and was higher in individuals with pH1N1 compared to other viruses (2.1% & 0.3%, respectively; p = 0.04). CONCLUSIONS/SIGNIFICANCE: During the peak pandemic 2009-2010 influenza season in Rhode Island, nearly half of patients admitted with influenza-like symptoms had respiratory viruses other than influenza A. A high proportion of patients were treated with antibiotics and pH1N1 infection had higher mortality compared to other respiratory viruses

    Ecosystem Carbon Stock Influenced by Plantation Practice: Implications for Planting Forests as a Measure of Climate Change Mitigation

    Get PDF
    Uncertainties remain in the potential of forest plantations to sequestrate carbon (C). We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests). Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha−1 in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age (<25 years vs. ≥25 years), stand types (broadleaved vs. coniferous and deciduous vs. evergreen), tree species origin (native vs. exotic) of plantations, land-use history (afforestation vs. reforestation) and site preparation for plantations (unburnt vs. burnt), and study regions (tropic vs. temperate). The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation

    Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution

    Get PDF
    Simultaneous recordings of many single neurons reveals unique insights into network processing spanning the timescale from single spikes to global oscillations. Neurons dynamically self-organize in subgroups of coactivated elements referred to as cell assemblies. Furthermore, these cell assemblies are reactivated, or replayed, preferentially during subsequent rest or sleep episodes, a proposed mechanism for memory trace consolidation. Here we employ Principal Component Analysis to isolate such patterns of neural activity. In addition, a measure is developed to quantify the similarity of instantaneous activity with a template pattern, and we derive theoretical distributions for the null hypothesis of no correlation between spike trains, allowing one to evaluate the statistical significance of instantaneous coactivations. Hence, when applied in an epoch different from the one where the patterns were identified, (e.g. subsequent sleep) this measure allows to identify times and intensities of reactivation. The distribution of this measure provides information on the dynamics of reactivation events: in sleep these occur as transients rather than as a continuous process

    Multisensory and Motor Representations in Rat Oral Somatosensory Cortex

    Get PDF
    Abstract In mammals, a complex array of oral sensors assess the taste, temperature and haptic properties of food. Although the representation of taste has been extensively studied in the gustatory cortex, it is unclear how the somatosensory cortex encodes information about the properties of oral stimuli. Moreover, it is poorly understood how different oral sensory modalities are integrated and how sensory responses are translated into oral motor actions. To investigate whether oral somatosensory cortex processes food-related sensations and movements, we performed in vivo whole-cell recordings and motor mapping experiments in rats. Neurons in oral somatosensory cortex showed robust post-synaptic and sparse action potential responses to air puffs. Membrane potential showed that cold water evoked larger responses than room temperature or hot water. Most neurons showed no clear tuning of responses to bitter, sweet and neutral gustatory stimuli. Finally, motor mapping experiments with histological verification revealed an initiation of movements related to food consumption behavior, such as jaw opening and tongue protrusions. We conclude that somatosensory cortex: (i) provides a representation of the temperature of oral stimuli, (ii) does not systematically encode taste information and (iii) influences orofacial movements related to food consummatory behavior

    Soil warming accelerates decomposition of fine woody debris

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Plant and Soil 356 (2012): 405-417, doi:10.1007/s11104-012-1130-x.Soil warming from global climate change could increase decomposition of fine woody debris (FWD), but debris size and quality may mitigate this effect. The goal of this study was to investigate the effect of soil warming on decomposition of fine woody debris of differing size and quality. We placed FWD of two size classes (2 × 20 cm and 4 × 40 cm) and four species (Acer saccharum, Betula lenta, Quercus rubra and Tsuga canadensis) in a soil warming and ambient area at Harvard Forest in central Massachusetts. We collected the debris from each area over two years and measured mass loss and lignin concentration. Warming increased mass loss for all species and size classes (by as much as 30%), but larger debris and debris with higher initial lignin content decomposed slower than smaller debris and debris with lower initial lignin content. Lignin degradation did not follow the same trends as mass loss. Lignin loss from the most lignin-rich species, T. canadensis, was the highest despite the fact that it lost mass the slowest. Our results suggest that soil warming will increase decomposition of FWD in temperate forests. It is imperative that future models and policy efforts account for this potential shift in the carbon storage pool

    Subspace Projection Approaches to Classification and Visualization of Neural Network-Level Encoding Patterns

    Get PDF
    Recent advances in large-scale ensemble recordings allow monitoring of activity patterns of several hundreds of neurons in freely behaving animals. The emergence of such high-dimensional datasets poses challenges for the identification and analysis of dynamical network patterns. While several types of multivariate statistical methods have been used for integrating responses from multiple neurons, their effectiveness in pattern classification and predictive power has not been compared in a direct and systematic manner. Here we systematically employed a series of projection methods, such as Multiple Discriminant Analysis (MDA), Principal Components Analysis (PCA) and Artificial Neural Networks (ANN), and compared them with non-projection multivariate statistical methods such as Multivariate Gaussian Distributions (MGD). Our analyses of hippocampal data recorded during episodic memory events and cortical data simulated during face perception or arm movements illustrate how low-dimensional encoding subspaces can reveal the existence of network-level ensemble representations. We show how the use of regularization methods can prevent these statistical methods from over-fitting of training data sets when the trial numbers are much smaller than the number of recorded units. Moreover, we investigated the extent to which the computations implemented by the projection methods reflect the underlying hierarchical properties of the neural populations. Based on their ability to extract the essential features for pattern classification, we conclude that the typical performance ranking of these methods on under-sampled neural data of large dimension is MDA>PCA>ANN>MGD
    corecore